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On the stratified Taylor column 

By NELSON G. HOGG 
National Institute of Oceanography, Wormley, Godahing, Surreyi 

(Received 22 June 1972 and in revised form 30 January 1973) 

We analyse the effects of small, circularly symmetric topography on the slow 
flow of an inviscid, incompressible, diffusionless, horizontally uniform, baroclinic 
current and show that the vertical influence depends primarily on three para- 
meters: a stratification measure S (the square of the ratio of buoyancy frequency 
times height scale to Coriolis parameter times length scale), a topographic 
parameter ,8 (ratio of scaled topographic height multiplied by scaled bottom 
current to  Rossby number E )  and the scaled upstream shear uA(z) (the dimensional 
upstream shear divided by the ratio of the r.m.s. upstream flow speed to height 
scale). 

Investigating a linear stratification model we find that the topographic effect 
is depth independent if S 5 E and a Taylor column, as indicated by the appearance 
of closed streamlines above the bump, exists when ,8 > 2. Moderate stratification 
(8 N 1) causes the flow to be fully three-dimensional and the Taylor column to 
be a conical vortex whose height depends on ,8, S and u&). The results are 
compared with Davies’s (1971, 1972) experiments. 

Our results tend to support the Taylor column theory of Jupiter’s Great Red 
Spot but effects due to variations in the Coriolis parameter with latitude have 
been (unjustifiably) neglected. Using typical values for the earths oceans we 
find that Taylor columns of significant height could be found there. Some 
pertinent observations from the ocean are discussed. 

1. Introduction 
Taylor (1917) and Proudman (1916) first discovered that the steady, in- 

finitesmally slow flow of an inviscid, incompressible, homogeneous fluid in a 
rapidly rotating system is independent of the direction along the axis of rotation- 
a result now known as the Taylor-Proudman theorem. Consequently, such flow, 
between parallel planes perpendicular to the rotation axis and past isolated 
topography, must behave at all heights as it does near the topography. Provided 
that the topography is high enough, and it need only be infinitesmally high, the 
vertical velocity implied by the fluid having t o  rise over it may be inconsistent 
with the slow motion constraint and the fluid diverts to follow more closely the 
topographic bathymetric contours. If this happens a region of closed streamlines 

t Present address : Department of Earth and Planetary Sciences, Massachusetts 
Institute of Technology. 
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whose pattern is depth independent may form above the obstacle. The region 
within these closed streamlines is known as a ‘Taylor column’ (Hide 1961). 
Taylor (1923) first observed the phenomenon in the laboratory. Amongst others, 
Hide & Ibbetson (1966), Hide, Ibbetson 85 Lighthill (1968), Vaziri 85 Boyer (1971) 
and Davies (1971, 1972) have continued the experimental investigation and ex- 
tended the results qualitatively. 

Let U be a typical speed, T a typical time scale for unsteady motion, L the 
horizontal scale of the topography, H the fluid depth, v the coefficient of kinematic 
viscosity and if the angular speed of the rotating system about the vertical. 
For the Taylor-F’roudman theorem to apply to such a flow the inherent assump- 
tions imply that a time parameter (fT)-l w 0 (steady motion), the Rossby 
number E = U/”L w 0 (slow motion) and that the Ekman number E = vlfHz z 0 
(inviscid fluid). The incompressibility assumption is well approximated by many 
geophysical fluids, while the homogeneous constraint is the subject of this paper. 
Letting Ap be a typical vertical density change over a depth I! in a fluid of typical 
density po, this homogeneous requirement demands that a parameter 

S = gHAp/Lyzpo E 0. 

To be specific we shall inquire into the effects of stratification when S 5 1 and 
I B E B E*. 

Within the range 1 $ E 3 ES Hide (1961) argued heuristically that a Taylor 
column could be forced in a homogeneous fluid by topography whose height 
exceeded the small value PEH, /? being a number of order unity. Ingersoll(l969) 
showed rigorously that /3 = 2 for an obstacle of small circularly cylindrical shape 
and called the closed-streamline region, resulting when /3 > 2 ,  an ‘inertial’ 
Taylor column (as opposed to the ‘viscous’ Taylor column problem of Jacobs 
(1964), who was interested in the range 1 B E* 9 8). 

There has been some dispute over the effects of stratification on such an inertial 
Taylor column. By hypothesizing that the baroclinic component of flow should 
be much less than the barotropic for a topographic disturbance to be depth 
independent Stone &Baker (1968) andIngersoll(l969) suggesttheveryrestrictive 
criterion that 8 < E < 1.  Hide (1971), however, in a general investigation of the 
steering influence of bottom topography derives a condition that can be rewritten 
as S < 1, 8 < 1, for the flow pattern to be two-dimensional, in agreement with 
an earlier study (Hide 1963) of flow over a two-dimensional ridge. 

The object of this paper is t o  present a detailed analysis of the effects of 
stratification on the formation of inertial Taylor columns in a continuously 
stratified fluid. Consistently with Hide (1971), we find that the streamline pattern 
is two-dimensional when S < 1 and E < 1 ($8 3 and 4). Even though the baroclinic 
component of the flow can be of the same magnitude as the barotropic when X - 8 
this z dependence is separable (equation (4.5) below), leaving a problem similar 
to Ingersoll’s (1969). It is shown that a Taylor column will form above a small 
cylindrical obstacle if the obstacle height exceeds a critical value given by 
h, = 2HfLU2/ut (0) ,  where 
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is a velocity scale based on the upstream profile u,*(z). Possible complications 
from the known instability (Eady 1949) of the undisturbed baroclinic flow are 
not considered. 

The moderately stratified case, S N 1, is also studied ($5) and, as could be 
anticipated, it is found that the disturbance decays in the vertical and resembles 
a conical vortex. We show that the apex height of the vortex depends, primarily, 
on two parameters: the stratification measure S and a topographic number 
/3 = h,fLu$(0)/U2 (h, being the obstacle height). The result is compared with 
experiments by Davies (1971, 1972) ( 5  6). 

Some justification for the use of the inviscid limit is given in $ 7. I n  $ 8  we 
discuss the results in relation to Jupiter's Great Red Spot, and the earth's 
atmosphere and oceans. 

2. Formulation 
We wish to consider the influence of a small, localized bottom deformity on an 

incompressible, stratified fluid, flowing steadily between two otherwise horizontal 
plane surfaces, in a system rotating about a vertical axis with uniform angular 
velocity if ( f  is the Coriolis parameter). The independent variables of the fluid, 
density p*(x* ) ,  velocity u*(x*) = (u*(x*), v*(x*), w*(x*)) and pressure p*(x*) ,  
are functions of a position vector X* = (z*, y*, x * )  in a rotating Cartesian CO- 

ordinate system. This co-ordinate system has unit vectors i*, j* and &* with &* 
parallel to the rotation axis, ?* directed downstream and the origin centred in 
the obstacle on the lower plane. The situation envisioned is illustrated by figure 1. 

The obstacle geometry is given by the relation z* = h*(x*, y*) while the upper 
surface is at  z* = H .  We suppose that the bump is sufficiently small that if h, 
is a measure of its height then 

The typical horizontal dimension L of this topography is assumed to be a measure 
of the horizontal scale in the motion. The fluid depth H is taken to be the vertical 
length scale. 

a: = h,/ll < 1. (2.1) 
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Far upstream from the obstacle the flow is uniform in the horizontal and 
u*(x*) -+ (ut(x*), 0,O).  The root-mean-square of ut(z*) defines the velocity scale 

The fluid is statically stable with density variation p* = po + App,(z*/H) for 
a hypothetical rest state. Here po is a constant reference density (that at  z* = 0 
for instance), Ap a measure of the density difference between bottom and surface 
(Ap < po) and p,(z*/H) a (negative) normalized function giving the vertical 
variation. 

The flow can be described qualitatively in terms of a number of non- 
dimensional parameters in addition to the obstacle height measure of (2.1). 
These are as follows: 

(2.3) I Rossby number 6 = U / f L ,  
Aspect ratio 6 = H / L ,  

Stratification measure S = (gApH/po f 2L2) = (iV8/f)2, 
Ekman number E = v/fH2, 

Prandtl number fT = V / K .  

In the above g is the acceleration due to gravity, N = (gAp/po H)*  is the Brunt- 
Vaisala frequency and v and K are coefficients of kinematic viscosity and thermal 
diffusivity respectively. Our interests are primarily in small inertial effects on the 
flow in the range e - a < 1. Viscous effects are for the most part neglected, 
a legitimate approximation if E: 9 E% so that typical vertical velocities forced 
by advection past the topography are much greater than those developed by 
Ekman suction. Some complications involved in this inviscid limit are discussed 
in fi 7. In  this limit the Prandtl number is taken to be of order unity. Finally, 
the magnitude of the aspect ratio is restricted only to the extent that 

6 V  < l,? 

so that the vertical momentum balance is hydrostatic at lowest order. 

and dependent variables in the following manner: 
Using these parameters it is possible to non-dimensionalize the independent 

(2.4) I (x*, Y", 2") = 

(u*, w*, w*) = U(u, w, 6w), 
Y, 6x1, 

P * ( X * )  = Po+Ps(4 +Po UfLr)(x), 
P * ( X * )  = Po + AP[P,(Z) + ( E / f l ) P ( X ) I ,  

aP&)/az = - g m o  + APP&)l* 

p,, +p,(z) being the hydrostatic pressure produced by the basic stratification, 
that is 

The contributions ~ ( x )  and p(x) to the pressure and density arise from dynamic 
force balances. 

t This can be formally verified post hoc, by noting that (2.10) below implies that the 
vertical velocity is of O( Uck). 
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Substituting these expressions into the Navier-Stokes equations with the 
previously mentioned assumptions yields the following set of equations 

1 
J 

su.vu-v = -pz,  

Eu.vvsu = -$Iu, 

0 = -pz-p, 
€u.vp+p;(z)sw = 0, 

v.u = 0. 

At the lowest order in e the motion is hydrostatic and geostrophic. The Boussinesq 
approximation has been used to retain variable density effects only in the form 
of a buoyancy force in the vertical force balance. 

We choose kinematic boundary conditions on the surface and bottom: 

w = O  on z = 1 ,  

w = m . V h  on x = ah(x,y), 

which specify that there be no normal component of velocity a t  the boundary. 
Far upstream the condition 

is imposed. 
From the set (2.5) it is possible to make two statements about the flow that 

hold for all ranges of stratification to be discussed. First we expand all the 
variables in a power series in the small Rossby number. For example 

u + (zGo(z), 0,O) as x -+ 00 (2.7) 

00 

u(x;s) = GnuyX) 
12=0 

is the expansion of the velocity vector. The lowest order horizontal momentum 
equations are 

which are equivalent to the definition of $I@) as a stream function. Substitution 
of (2.9) into the continuity equation shows that wio) = 0. As do) = 0 on the 

w(0) 0 (2.10) upper boundary 

everywhere. The flow is approximately hurizontal. 
The second statement is derived from an elimination of p(1) from the O ( E )  

horizontal equations and use of the O ( E )  continuity equation. We find that 

v(0) = p p ,  u(0) = -pf), (2.9) 

(u(o) * ' h  = a/ax f 'do) a/ay) u(o). v ,~  p)  = wil) (2.11) 

with [(O) = WE) - ut )  = VEp(0) being the vertical component of vorticity relative 
to the rotating frame. Equation (2.11) states that O(1) changes in [(O) and, con- 
sequently, in d o ) ,  d o )  and the horizontal streamline pattern, occur if there are 
vertical variations in the small, O(E), vertical velocity. For our situation this 
implies that the topography, although small, can have a significant effect on 
the horiziontal flow, if a N E ,  through the vertical velocity imposed in (2.6). 

Sections -3-5 will consider the manner in which this vorticity is distributed in 
the interior for varying degrees of stratification. 
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3. Very weak stratification: X < e 

In  the scaling equation (2.4) for p*(x*) ,  eApp(x)/X is the contribution t o  the 
density field needed to balance the Coriolis force at lowest order while po + App,(z) 
is the density present if there is no motion. As p(x)  is derived from the effects of 
motion on p,(z), ep(x)/S s p,(x). In  this very weakly stratified regime e/X > I, 
so that p(x) - s / e  < 1 and p(O) = 0 because p,(z) N 1. 

From the hydrostatic balance, therefore, 

p p  = 0. (3.1) 

Geostrophy at O( 1) implies, then, that 

2 (3.2) tc$o' = (0 )  = 0 
vz 

which, combined with the previously derived fact that wio) = 0, shows that the 
motion must be independent of x (the Taylor-Proudman theorem). At this 
degree of stratification the fluid behaves as it would if it were homogeneous. 

This depth independence allows (2.11) to be integrated from bottom to surface 
yielding 

(1 - ah) ~ ( 0 ) .  V[(O) = - (a/€) u(O). Vh. 

u(0) . V( p' + ph) = 0, (3.4) 

where p = a/€ (3.5) 

(3.3) 

If we neglect the small O(a)  term in the depth integration then 

is a topographic parameter. The quantity Qo) + ph can be regarded as a potential 
vorticity which is conserved along streamlines. On streamlines which intersect 
topographic contours ph > 0 and QO) must decrease in order that potential 
vorticity be conserved. If <(O)vanishes upstream, as in our case, negative relative 
vorticity is generated. 

Using the fact that Qo) --f 0 upstream (3.4) can be integrated to show that 

Vip(O)+ph = 0 (3.6) 

(Q") = V;p(O) from geostrophy). Ingersoll (1969) has examined solutions to this 
equation for the special geometric case of a small, circular, cylindrical obstacle. 
He finds that there exists a critical value of ,8, ~3, say, below which a Taylor 
column does not form, the Taylor column being defined by the appearance of 
closed streamlines. In  the circular cylindrical case ,4, = 2 .  For /3 < /I, streamlines 
resemble those illustrated in figure 5 (c) of 5 5. For ,8 > p, the pattern is qualita- 
tively similar to figure 5(a).  In  general, when /3 > pC the Taylor column sits 
over the right side of the obstacle looking downstream. 

Ingersoll (1969) investigated the long-term effects of viscosity on the fluid 
within the Taylor column noting that (3.6) is derived from imposed upstreanz 
conditions which do not necessarily apply to the region within a column. A dis- 
cussion of this problem, with particular application to the moderately stratified 
regime, is given in 5 7. 
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4. Weak stratification: IS' N e 

The scaling relation for p*(x* )  in (2.4) is now consistent with the density 
perturbation p ( x )  being O( 1) and there is sufficient stratification that an O( 1) 
vertical shear can be supported by a horizontal density gradient in the thermal- 
wind manner (i.e. %Lo) = &), vLo) = -&')). 

Because w(O) = 0 the density conservation equation in (2.5) reduces to 

(4.1) u(0). v (0) = - u(0). V h P p  = 0 hP 

with the aid of the hydrostatic pressure equation. Asp(o) is a stream function this 
equation can be integrated to show that 

pLo) = F(p@)), (4.2) 

P(p(O)) being an, as yet, undetermined function of p(O). If  we use the undisturbed 
upstream condition of (2.7), then 

p(O)(x) + - u&) y as x -+ co, (4.3) 

(4-4) 

by integration of the geostrophic relations (2.9) for the undisturbed flow, setting 
p(O)(x) = 0 on y = 0 far upstream. We have, therefore, pLo)/p(O) = uJuo, an equation 
which is easily integrated with the important result that 

(4.5) 

p p ( x )  -+-uA(z)y = (u~(z)/u0(z))p(O) = P(p(O)), 

P(o)(x, Y, 2) = %0(4 $(x, 9)- 

I n  other words the z dependence in the stream function is separable and the 
streamline pattern is independent of depth. In  particular if closed streamlines 
(i.e. a Taylor column) occur at one depth they must exist in a similar form (but 
with a different value, perhaps) at all other depths. 

This conclusion can be slightly generalized so that it does not depend on 
upstream conditions. The local slope of a streamline in a horizontal plane is given 
by the ratio of do) to do', so that 

slope (x, y, z )  = v(O)/u(O) = - P, ( O )  /P?- (4.6) 

If we differentiate (4.6) with respect to x we determine the manner in which the 
streamline slope depends on depth. This is 

= 0. (4.7) 

As the horizontal streamline slope is depth independent the streamline shape, 
found from an integration of the slope, must be independent of depth as well. 

The physical reason for this behaviour is the following. Suppose we consider 
the fluid to be composed of a large number of homogeneous layers each with 
a different density such that density increases with depth. This 'multi-layer ' 
analogy is illustrated in figure 2. The motion within each layer will be depth 
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FIUURE 2. A multi-layer analogy of the density field for the weak stratification problem 
(8 N 8 ) .  We are looking downstream. The solid diagonal lines are the interfaces between 
layers far upstream from the obstacle. The dashed lines give the displaced positions of 
two interfaces at some point near the obstacle. A and B denote vertical vortex lines ex- 
tending from bottom to top of their respective layers far upstream. A’ and B’ are the 
positions to which they have been carried by flow along streamlines. 

independent according to $ 3  and we can consider the concept of vorticity in 
terms of small vertical vortex lines extending from each layer bottom to its top 
(two such vortex lines are denoted by the letters A and B in figure 2 ) .  When such 
vortex lines are carried over topography they are compressed and this compression 
gives rise to negative relative vorticity. 

Consider, now, the effect of topography on vortex line A in figure 2. As the 
motion carries it into contact with the bump, a slight compression is felt which 
produces O( 1) vorticity and a displacement to A’ at some point in its travel past 
the bump. Geostrophy and continuity force the motion to be nearly horizontal. 

Note, now, the effect of this distortion of the upper interface on vortex line B. 
The scaling relation of (2.4) for p*(x*)  implies that, in order for the flow to have 
significant shear, the isopycnals (i.e. interfaces) must have an O( 1) slope in our 
stretched geometry. If vortex line B does not move in almost the same manner as 
A to position B‘ it will, therefore, suffer an O( 1) compression or extension which 
is incompatible with there being only O( 1) vorticity present and with the fact 
that w(O) = 0. 

Hide (1971) has derived a similar result using a scaling argument. In  his 
terms, when a parameter c = 8-l B 1 the fluid at all depths is strongly ‘steered ’ 
by topography. 

The z dependence is separated by substitutions of the form 

U(O)(X, Y, 2) = uo(z) u’@, y), 

Ui (X)  u’ . Vp‘ = wp. 

(4.8) 

so that the vorticity equation becomes 

(4.9) 

Integrating from bottom to top as in $ 3  and neglecting quantities of O(a) we 
find, as in (3.4), that 

u’ .V(c’+ph)  = 0, (4.10) 
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provided that the topographic parameter is redefined to be 

P = (44 UO(0). (4.11) 

The dimensionless ratio ~ ~ ( 0 )  = @(O)/U enters through the bottom boundary 
condition and accounts for the fact that it is the bottom flow that actually senses 
the bump. 

In  a similar manner to Ingersoll’s (1969) problem of 3 3 we can integrate (4.10) 
to find a potential vorticity relation analogous to  (3.6) and the critical value of 
B for the Taylor column formation. As before, P, = 2 in the particular case of 
a small right circular cylinder. 

We must emphasize that these conclusions, as stated, apply only to  steady flow. 
It has been shown that baroclinic flows may be unstable to infinitesimal dis- 
turbances provided that S is less than a critical value of order unity (Eady 1949). 
No account of this effect has been made but the problem does not arise if the 
flow upstream is barotropic; the constraint of (4.5) forces it to remain barotropic 
in the presence of the bump. 

5. Moderate stratification: S N 1 

At this level of stratification the small isopycnal tilt O(e/S) provides horizontal 
density gradients sufficient to balance the O( 1) vertical velocity gradient. With 
reference to the multi-layer analogy of 3 4 this means that the vertical distortion 
of an interface by horizontal motions near the bump is O(e/S) < 1 consistent 
with the mechanism of O(1) vorticity generation in each layer. Some of the 
compressing effect of the bump is taken up in a lower layer through the generation 
of relative vorticity, so that the one above sees a reduced effect. In  this way the 
bump influence decays in the vertical- the form of this decay is the main subject 
of this section. 

In  order to simplify the mathematical analysis we further simplify the model 
to consider only a linear upstream velocity profile and undisturbed density 
gradient. Thus 

a&) = a+&, a2+ab++b2 = 1 (a > - b ,  a > 0) (5.1) 

and P,(4 = -2, (5.2) 

where a and b are constants with the quadratic restriction in (5.1) being the 
non-dimensionalversionof (2.2). We further specify that a > - b, SO that u0(z) > 0. 
A flow reversal with depth gives rise to the possibility of a stationary wave 
pattern (essentially the short ‘neutral waves’ of the Eady (1949) baroclinic 
instability theory). This effect will not be discussed; nor will unstable waves 
themselves, but we note that the latter will have the positive phase speeds and 
so could not be directly excited by the obstacle. 

From the density equation (2.5) we are able to compute the stretching term 
in the vorticity equation to be 



526 N .  C. Hogg 

as uLo). Vp(0) = 0 from geostrophy and the hydrostatic pressure balance. Equation 
(2.11) becomes 

[(O)-plp)/S is a potential vorticity analogous to (3.6) and is conserved along 
streamlines. The term -pio)/S measures the stretching effect of the separation 
between isopycnals in much the same way that ph did for the total fluid depth 
when the flow pattern was depth independent. 

Using the O( 1) momentum equations we write the potential vorticity in terms 
of ~ ( 0 ) )  the pressure stream function. Equation (5.4) integrates to show that the 
potential vorticity is a function of ( ~ ( 0 )  which vanishes upstream. Therefore 

d o ) .  V,( QO) - p$O’/S) = 0. (5.4) 

Vtp(0) +pg)IS = 0 ,  ( 5 . 5 )  

valid everywhere except, possibly, within closed streamlines. 

in terms of p(O). We have 
Boundary conditions (2.6) on the upper and lower surfaces can also be derived 

O = w(l) = (s/S) ~ ( 0 ) .  V,p(O) on x = I, ( 5 . 6 )  

uO(i)pLo)-u~(1)p(O) = o on z = 1. (6.7) 

which integrates along streamlines to give 

The bottom condition is found from (2.6) by expanding w(l) = (a/€) do). V, h 
at x = ah(x, h) in a Taylor series about x = 0, and this gives 

to lowest order. 
We procoed to find a solution to the elliptic boundary-value problem posed 

by ( 5 4 ,  (5.7) and (5.8) and the upstream condition given earlier in (4.3). To 
begin with, the geometry is chosen t o  be that of the small right circular cylinder 
for which it is convenient to work in the polar co-ordinates ( r ,  8, x )  defined in 
figure 1.  Therefore 

uo(0)plp)-u~(O)p(o) = -pSh on z = 0 (5.8) 

(5.9) 

is our chosen obstacle shape. 
With this formulation it is a simple matter to obtain solutions in the two regions 

of (5.9) by the separation-of-variables method and 
Vertical eigenfunctions u,(z) arise and are given by 

ak, cos k, z + b sin k, z 1; (ak, cos k,z’ + b sin knz’)2dx’ 
u,(z) = 

with eigenvalues k,,, which are solutions to 

then match them a t  r-= 1. 

(n = 1,2, ...), (5.10) 

kn 
I +tki’ 

tank, = - (5.11) 

So defined, the set {uo(z), u,(z)> is orthogonal. The restriction that t > 0 arises 
from the assumption that the flow is unidirectional. 
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We find that 

p(O)(r, 8, z )  = - uo(z) r sin e - &puo(z) lnr - S i p  Z; Il(Z,)Ko(Znr) un(z) (r > I); 

p(O)(r, 8, x )  = - u0(z) r sin 8 + &3( 1 - r2) uo(z) 

W 

n=l 
( 5 . 1 2 ~ )  

having set 1, = kn/Xi for convenience. The functions In(z) and K,(z) are modified 
Bessel functions of x .  In  the limit S -+ 0 the series terms vanish from (5.12) and 
the solution found by Ingersoll(l969) to the homogeneous problem remains. 

We have been primarily interested in the vertical influence of the obstacle as 
measured by the existence of closed streamlines in the flow field. Extrema in 
(5.12) for p;O), the azimuthal velocity, occur at the obstacle’s lateral extremes. 
For there to be stagnation with no flow reversal at a given height the particular 
extremum is at r = 1, 8 = -in (p > 0) and, in order that a Taylor column 
appears at  this level, the topographic parameter must exceed the critical value 

(5.13) 

found by setting pbo) = pio) = 0 at 8 = -In 2 9  r = 1. 

shown that 
The series term in ,8 converges very slowly. If the S, is the Nth term it can be 

b - - sin Nnz + O( ( N ~ T ) - ~ ) .  (5.14) 
S9 St 

zco(z) 8, -+ - cos Nnz + - 
a N n  (aNn)*( y )  

By rewriting (5.13) in the form 

the first summation converges as (nn)-2 while the second is evaluated exactly 
as (Gradshteyn & Ryzhik 1965, p. 38) 

(5.16) 

Using the altered expansion of (5.15) we computed the necessary p for a 
column to penetrate to a height z for a given stratification S and upstream shear 
u&z) = b. The result is presented in figure 3 as contours of constant p. From an 
inspection of these curves several facts emerge. In  the limit of small S,  B+ 2 (see 
also figure 4) as we expect from the weak stratification section, but a weakly 
stratified column with /l= 2 has a height of about Q if the stratification is non- 
zero. Pu’ote that the curves for ,8 > 2 drop rapidly from z = 1 as S increases, and 
then flatten out at higher S to  approach an almost constant level of about z = 9. 
Apparently the volume of the column is constrained in some way and, although 
the stratification wishes to concentrate the disturbance near the bottom, the 
Coriolis forces work to limit its horizontal dimensions. We return to this observa- 
tion in commenting upon Davies’s (1971, 1972) experiments in the next section. 
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FIGURE 3. Graph of the penetration height versus S of a ‘Taylor cone’ forced over a 
circularly cylindrical bump for various /l and ZL;(Z). 

s= (SrU/y)S 
FIGURE 4. Plot of p required for a ‘Taylor cone’ to penetrate to the 

surface for a given 8 (uA(z) = 0). 

We also observe that there is no critical magnitude for /3: Taylor oohmns appear 
for all /3, although they become more and more confined to the bottom as /3 
decreases and may eventually be lost in the topography. It is interesting that 
the height of a column for p < 2 actually increases with stratification at  small 
values of S. Finally we note that the explicit dependence on shear in thispresenta- 
tion is weak although there is an implicit dependence through p = au,,(O)/e. 
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-6 - 4  -2 0 2 4 6 
% 

Figure 4 gives the required p for a column to penetrate to the surface for a given 
S. Curves for the three values of u&) are practically identical and approach the 
line /3 = S for large S and the value p = 2 for small S. 

In figure 5 we lzave drawn streamlines at the three levels z = 0, z = 8 and x = 1 
for uA(z) = 1, ,8 = 3 and S = 1. The column, as outlined by the closed streamlines, 
is an anticyclonic vortex (a ‘Taylor cone’) sitting over the right-hand edge of 
the obstacle. From figure 3 its penetration height is about z = 0.6, but observe 
that, even at the surface, a strong streamline distortion is felt. 
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FIGURE 8. Streamline plot for u&) = 1, p = 3 and S = 1 at (a)  z = 0, (b) z = 3 and 
(c) z = 1. The obstacle is represented by the dashed circle of unit radius. Contours are 
lines of constant p'o'/u,(z) obtained from (5.12). 

X 

6. Experimental verification 
Davies (1971, 1972) has performed a series of experiments which were intended 

to explore the problems considered in the previous two sections. A cylindrical 
container 30 cm deep and 60 cm in diameter was filled while rotating with a 
stably stratified salt solution designed t o  give a linear density gradient. After 
waiting for the interior to be in solid-body rotation a small sphere of diameter 
3.8cm was set in motion horizontally in the azimuthal direction. Basing the 
Rossby number on the sphere radius and the Ekman number on the fluid depth 
Davies's flow had B = 8-8 x 10-3 and E = 7-1 x 

Qualitatively the flow observed by Davies is similar to that predicted. When 
the stratification is slight there is little attenuation of the obstacle disturbance 
with height but the attenuation increases with stratification. The lateral asym- 
metry of figure 5 is also seen but, as well, there is an upstream-downstream 
asymmetry reminiscent of the pattern predicted and observed by Vaziri & 
Boycr ( 197 I )  for homogeneous flow. Presumably this is a result of the fact that 
c z 3EB and vertical velocities induced through Ekman suction are not entirely 
negligible. The topographically forced negative vorticity induces a downward 
velocity in the Ekman layer over the obstacle which counteracts the vortex-line 
compression on the forward part of the obstacle and complements it on the rear. 

Davies attempted t o  quantify the vertical influence of the obstacle by observing 
the horizontal distortion of radial dye lines at  various levels. This distortion 
generally decreased in an exponential fashion with height allowing him to define 
an influence height as being the e-folding height on his fitted curves. 

We could solve our problem for a hemispherical obstacle on a flat plane to 

so that E > E f  = 2.7 x 10-3. 
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FIGURE 6. Comparison of the theoretical dependence of column height on 
stratification when ui(z)  = 0 with experimental points of Davies (1971). 

make it a closer approximation to the experiment. However, because of the 
difficulty in relating our methods of defining the Taylor column and the other 
approximations involved the effort would be pointless. Ingersoll (1969) found 
that the critical topographic parameter in the homogeneous problem with a 
hemisphere was increased from @ = 2 to 3($)4. We relate the two problems by 
replacing Davies’s sphere with a cylinder of effective height 1-9(3)-# cm and 
placing it on a flat plane in a container of depth 19 cm (Davies’s sphere was 19 ern 
below the upper surface). In  this way we find that a = h,/H = 0.054, giving 
@ = cl/e = 6. In  the experiment &(z) = 1, so that ~ ~ ( 0 )  = 1. 

Davies used the ratio N/f  as a measure of the stratification and was able to 
vary this from 0 to 0.24. Our S = (8N/ f )2  and therefore changes from 0 to 5.8. 
In  figure 6 are shown Davies’s measured column heights fOr those stratifications 
in which the column top, as defined by him, was within the container. We observe 
that the column height decreases rapidly at  small X and then levels off to an 
almost constant value. The theoretical curve for p = 6 is shown but we find that 
the curve /9 = 3 gives much closer agreement. 

Several explanations can be given for this discrepancy. Most important, Davies 
has used a different method for measuring column height and made his measure- 
ments after the Ekman layer a t  the bottom of the column had been allowed to 
perform its spin-up role. We would prefer to have column height measurements 
during the intermediate time between the time needed to actually establish the 
column and the spin-up time. More will be said on this point in Q 7. 

7. The inviscid limit 

based on a vanishingly small viscosity. 
There are, at least, two difficulties associated with the application of analyses 
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Such a limit implies a large Reynolds number and indicates that flow separa- 
tion from the obstacle will occur. In  non-rotating situations at  large Reynolds 
number fluid particles, within the viscous boundary layer near the obstacle, 
cannot follow highly curved paths in the lee (such as those illustrated in figure 5) 
because of the adverse pressure gradient associated with the regions of accelerated 
and decelerated flow. Instead the flow separates at  the obstacle’s lateral extreme 
and a smoother streamline pattern is established. In  the rapidly rotating case, 
however, it appears that flow separation is inhibited until larger Reynolds 
numbers are reached. Perhaps this is because of the lowest order equivalence 
between the stream function and pressure: slowly moving particles in the 
boundary layer experience, mainly, a lateral pressure gradient from the Coriolis 
forces. Experiments on the homogeneous Taylor column (Vaziri & Boyer 1971) 
give remarkably good agreement with theory and no evidence of flow separation 
for Reynolds numbers as large as 400, based on the obstacle length scale, or 50 
based on its height. 

Closed streamlines, as we have found for allp with X = O( 1) and above a critical 
value in the other parameter ranges, represent another problem in the inviscid 
limit. Within these closed streamlines the fluid is isolated from the upstream 
flow and acted upon by viscous stresses at the boundaries and graduallj loses 
its upstream history. 

Mathematically the difficulty arises in deriving flow equations like (5.5). 
Potential vorticity from (5.4) is conserved along streamlines, but to obtain (5.5) 
we evaluated the conserved quantity far upstream. Closed streamlines do not 
terminate upstream and therefore, strictly speaking, the flow along them does 
not necessarily obey (5.5). In  fact, additional solutions satisfying the appropriate 
equations outside the column and arbitrary conditions inside can be found. 

For the homogeneous problem Ingersoll(l969) was able to include the effects 
of a vanishingly small viscosity. Using an inductive argument based on the 
circulation theorem and the fact that vorticity must be of 0(1)  everywhere he 
showed that the ultimate state of the column must be stagnant. With O(1) 
vorticity the bounding streamline must also have no motion along it and these 
conditions allow a unique determination of the exterior flow. 

The circulation theorem is complicated in our problem by the inclusion of 
stratification and we have not been able to derive a similar result. However, the 
applicability of such an argument, if available, t o  many geophysical flows is 
questionable. It relies on the flow being steady long enough for the Ekman layers 
on the bounding surfaces of the Taylor column to spin up the interior to a new 
steady state (which is stagnant for the homogeneous case). For both homo- 
geneous and non-homogeneous flows this time scale is of O(E-hf-1) (see, for 
example, Walin 1969; Buzyna & Veronis 1971), a considerable length of time for 
the earth’s atmosphere and oceans. 

Por a broad class of initial conditions in an initial-value problem (for instance 
if the t = 0 flow field is horizontally uniform) it can be shown that 
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with d/dt = a/at+dO).V, t being time scaled byf-l. Equation (7.1) says that 
even during the transient stage in the flow potential vorticity is conserved along 
streamlines. After the column has been established, on a time scale of the order 
of the advective time over the obstacle, fluid that becomes isolated will remember 
its upstream past and, a t  least until dissipation is felt (time scale 0(E-Jf1)), be 
governed by dynamics based on the upstream condition. A similar time- 
dependent form of the boundary conditions (5.7) and (5.8) can be derived. 

We feel, therefore, that the results derived for X N 1 may be valid when applied 
to flow that can be considered steady on the advective time scale but unsteady 
on the spin-up time scale. 

8. Observational evidence 
The most celebrated evidence suggesting the natural occurrence of a Taylor 

column is Jupiter’s Great Red Spot - a quasi-stationary phenomenon in one of 
the zonal belts of Jupiter’s atmosphere. Hide (1961) first advanced the Taylor 
column hypothesis to explain the spot as a manifestation of the influence of 
a topographic feature in the lower atmosphere. Since then this speculation has 
been subject of some controversy. 

Stone & Baker (1968) offered a qualitative analysis to show that density 
stratification could inhibit Taylor column development. By considering a balance 
between vertical advection and heat diffusion they showed that a critical 
parameter 

Z = gS/EJ < 1 (8.1) 

for two-dimensional motion. Available data suggested that 2 $ 1 for Jupiter. 
In  order to ignore horizontal advection of heat a further ratio 

UH2/KL < 1. (8.2) 

Stone & Baker believed this to be true, estimating UH2/KL M 10-l. Hide (1969) 
challenged their value of K = l O 1 O  cm2 s-l, suggesting that it was incredibly large. 
A lower value ( K  < 108cm2s-1) invalidates (8.2) and makes (8.1) inapplicable. 
In  this case our model equating vertical and horizontal advection is more 
appropriate. 

Stone & Baker developed a second criterion based on the idea that two- 
dimensional motion was not possible if the upstream current contained significant 
vertical shear. As Hide (1971) and this paper have shown that this hypothesis is 
incorrect: the streamline pattern is independent of depth in a steady baroclinic 
flow provided that the two parameters S N E < 1 and diffusive effects can be 
neglected. 

For flow in the neighbourhood of the Red Spot 8 M 0.04 (Ingersoll). The 
stratification of the atmosphere is unknown, but Ingersoll calculates that S M 0-03 
for an is othermal atmosphere. These values clearly satisfy the requirements of 5 4 
and, as we showed in 5 6 ,  even X = O( 1) is not inconsistent with the Taylor column 
hypothesis provided that the obstacle is high enough. For a more direct com- 
parison with flow in the region of the Red Spot it would be necessary to take into 



534 N .  G. Hogg 

account latitudinal variations in the Coriolis parameter (the latitudinal ' p- 
effect '). 

The earth's atmosphere is a somewhat different situation chiefly because of 
the reduced horizontal scales for major topographic features. Typical values 
for mountain ranges give E M 0.2 and S E 1.5 (Ingersoll). Even if our small 
Rossby number analysis should apply to flow with a Rossby number so close to 
unity we would need a > 2e/u0(0) in order to have closed-streamline formation 
at moderate heights. Such a large value of a will correspond to an obstacle height 
almost filling the Taylor column. In  addition, smaller scale irregularities (e.g. 
individual mountains) in the larger scale features we are considering will have 
much larger Rossby numbers associated with them and complicate our simplified 
picture. Latitudinal variations in f are also important. 

Oceanic flows generally have a lower Rossby number chiefly because of their 
lower typical speeds. For argument's sake let us suppose that U = IO~rns-~ ,  
f = 10-4 s-1, N = 2 x s-l, L = 50 km and H = 4 km. These values give 
E = 0.02 and 8 = 2.6, which fall nicely within the moderate stratification category 
of $ 5 .  Referring to figure 4 we find that a topographic parameter = 5 is suficient 
a t  S = 2.6 for the column to penetrate t o  the surface. Translating this into an 
obstacle height we find that 

h, = 5Hs U / U ~ ( O )  

= 4OOU/u,"(O) m. 

A barotropic upstream flow would imply that an obstacle 400m high would 
force a Taylor column penetrating to the surface. Generally ut(0) < I/' and 
h, > 400m is needed. Seamounts of these dimensions are a rather common 
feature of the ocean's bottom topography. 

The fact that no direct observations of Taylor columns have becn made in 
the ocean might seem remarkable considering the small topography necessary. 
One might explain this absence as being a result of violations by the ocean of 
some of the assumptions made in the analysis. Time dependence. dissipation, 
and non-uniformities in the upstream flow could each prevent such a phenomenon. 
However, an alternative explanation is that conventional measurement tech- 
niques using moored current meters are not an ideal means of observing these 
topographic effects and only scattered observations with the more satisfactory 
neutrally buoyant floats have been reported. Few hydrographic station networks 
have been of small enough scale to delineate such features. 

There are a few observations which conform to the flow patterns computed 
in $ 5 .  Fuglister (1963) reports on the track of a neutrally buoyant float as it 
travelled in the vicinity of Kelvin Seamount. The float was deflected to the left 
and accelerated as it passed some 500 m above the local bottom. The trajectory 
is very similar to one of the upper streamlines in figure 5 .  Meincke (1971) de- 
cribes an anticyclonic vortex trapped above Great Meteor Seamount. Doming 
of the isopycnals decreased with height, and contained rotational speeds of 
3-7 em s-1 which are not inconsistent, in our terms of reference, with the residual 
speeds of 1-3 ems-' found away from the seamount. Meincke explains the 
feature as being the result of tidal mixing. Defant (1961, p. 469) describes what 
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he calls a cyclonic vortex above Altair Seamount. The given mass field, however, 
is consistent with an anticyclonic vortex whose rotational speed increases with 
depth. It is interesting that the axis of the vortex tilts to the right (looking down- 
stream) with height as is true of the case illustrated in figure 5 .  

Additional circumstantial evidence relating to the flow pattern on the bottom 
can be found in the configuration of sediments near seamounts. The streamline 
patterns in figure 5 are strongly asymmetric giving flow acceleration (reduced 
deposition) on the left and flow stagnation (enhanced deposition) on the right 
looking downstream. One well-documented seamount is the Hnauss Knoll 
situated on the continental rise of the Western North Atlantic Ocean near 
Hudson Canyon in the middle of the Western Boundary Undercurrent. Lowrie & 
Heezen (1967) attempt to explain a large drift of sediments on the upstream 
end of the knoll by stagnation in a conventional symmetric flow. The echograms 
presented by them show a strong right-left asymmetry with a region of large 
deposition directly to the right of the knoll. This pattern agrees well with our 
analysis and the foredrift could well be the upstream extension of this slow water 
region.? Finally, Johnson, Vogt & Schnoider (1971) report on a large number of 
seamounts in the Northeastern Atlantic many of which are almost surrounded 
by horseshoe-shaped moats or channels in the sediments at  their bases. These 
moats are all breached by sediments on one side of the associated seamount and 
conform, qualitatively at least, to our flow patterns. Unfortunately, correlated 
current measurements are not available. 

The work of § 4 for S - B appears to have some application to what is known 
as the ‘preconditioning phase’ of bottom water formation in the northwest 
Mediterranean Sea. Observations reported by Swallow & Caston (1973) are con- 
sistent with there being a two-dimensional Taylor column trapped over a bulge 
in the continental slope bathymetric contours (Hogg 1973). The reader is referred 
to these accounts for the details. 

9. Summary 
We have shown that small bottom topography can have a significant effect 

at  all depths on the slow steady flow of a rotating stratified fluid between plane 
horizontal boundaries even though the upstream state is baroclinic. This vertical 
influence depends primarily on the stratification measure 8, the topographic 
parameter /3 and, to a lesser extent, the upstream shear u;(z)  for small Rossby 
number flows. 

Very weak stratification (8 < 6 << 1) cannot support a vertical shear in the 
horizontal flow, which must be two-dimensional even in the presence of topogra- 
phy. As was shown by Ingersoll (1969) a Taylor column appears over the right- 
hand edge of a right circular cylindrical obstacle when p > 2. 

Weak stratification (S  - E < 1) can support baroclinic motions and, in par- 
ticular, an upstream shear u&) + 0 but we have shown, in agreement with 
Hide (1971), that the effect of topography on the horizontal streamlines remains 

t Similar qualitative agreement has been found for two seamounts, Anton Dohrn and 
Rosemary Bank, in the Rockall Trough (Roberts et al. 1973). 
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depth independent. A Taylor column then exists when p > 2 for a right circular 
cylindrical obstacle. 

Moderate stratification (S N 1) eliminates the two-dimensional constraint. We 
have outlined the manner in which the Taylor column collapses into a three- 
dimensional ‘Taylor cone ’ and computed the dependence of the cone’s penetra- 
tion height upon p, uA(x) and S (figure 3). Of particular significance are the facts 
that a Taylor cone exists no matter how small the magnitude o f p  and that, at  
constant ,8, the cone height decreases more and more slowly as S becomes large. 
A comparison of this cone height dependence on S with Davies’s (1971, 1972) 
experimental work is qualitatively good (figure 6) .  

More work is needed both in the laboratory and the field. Previously reported 
observations from the ocean are suggestive but not conclusive. More exhaustive 
experiments into the effects of shear are needed and more attention must be 
paid to viscous stresses. Measurements of column height versus time in the 
parameter range e B E* would be very helpful in illuminating this latter problem. 

My interest in this topic was kindled by discussions with Andrew Ingersoll at  
the 1970 Summer Study Program in Geophysical Fluid Dynamics at  the Woods 
Hole Ooeanographic Institution. The analysis and computations were performed 
while I was recipient of a National Research Council of Canada postdoctorate 
fellowship a t  the National Institute of Oceanography. I thank the N.I.O. staff 
for their hospitality and assistance. I am especially grateful to Steven Thorpe 
and David Roberts for their help and advice. Comments from a referee and 
Michael McIntyre helped clarify the presentation. 
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